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We continued to consider the motion of the Foucault pendulum.  The z-motion of the bob 
is fairly simple, essentially reducing to the statement that T ≅ mg.  The tension in the 
horizontal xy-plane is T𝑥 = −𝑚𝑚𝑚/𝐿, and T𝑦 = −𝑚𝑚𝑚/𝐿.  The Coriolis force is found from 
the cross product 2𝑚�̇� × Ω��⃗ .  We write �̇� = (�̇�, �̇�, �̇�) and Ω��⃗ = (0,Ω sin 𝜃 ,Ω cos 𝜃).  After 
carrying out the cross product and putting the results into the equation of motion, broken 
down into components, we get: 𝑚�̈� = −𝑚𝑚𝑥

𝐿
+ 0 + 2𝑚(�̇�Ω cos 𝜃 − �̇�Ω sin𝜃), and 𝑚�̈� =

−𝑚𝑚𝑦
𝐿

+ 0 − 2𝑚�̇�Ω cos 𝜃.   We shall drop the �̇� term in the x-equation because it is the 

product of two small velocities, define the constants 𝜔0
2 ≡ 𝑚/𝐿, and Ω𝑧 ≡ Ωcos 𝜃, to get two 

coupled equations of motion: 

  �̈� − 2�̇�Ω𝑧 + 𝜔0
2𝑚 = 0 

  �̈� + 2�̇�Ω𝑧 + 𝜔0
2𝑚 = 0 

The first and third terms alone would give un-coupled simple harmonic motion in the xy-
plane.  The coupling terms look like a form of dissipation (of the form 𝐹𝑑𝑑𝑑 = −𝑏𝑏) but in 
fact they represent a coupling of energy from one direction of motion to the other.  The 
energy in the oscillations sloshes back and forth between x and y. 

These equations can be combined in a manner similar to the equations for motion of a 
charged particle in a magnetic field.  Take the first equation plus “i” times the second 
equation, and define the new dependent complex variable 𝜂(𝑡) ≡ 𝑚(𝑡) + 𝑖𝑚(𝑡) to get a single 
equation: �̈� + 𝑖2�̇�Ω𝑧 + 𝜔0

2𝜂 = 0.  Trying a solution of the form 𝜂(𝑡) = 𝑒−𝑑𝑖𝑖, we get an 
auxiliary equation with solutions 𝛼 = Ω𝑧 ± �𝜔02 + 𝜔Ω𝑧2.  Using the fact that the pendulum 
oscillates many times compared to the rotation period of the Earth (i.e. 𝜔0 ≫ Ω𝑧) we come to 
the solution 𝜂(𝑡) = 𝑒−𝑑Ω𝑧𝑖�𝐶1𝑒−𝑑𝜔0𝑖 + 𝐶2𝑒+𝑑𝜔0𝑖�.  To supply initial conditions, consider 
pulling the pendulum bob to a displacement 𝐴 in the east (𝑚) direction (𝑚 = 0) and release it 
from rest.  In this case one finds 𝐶1 = 𝐶2 = 𝐴/2, and the solution is 
𝜂(𝑡) = 𝐴𝑒−𝑑Ω𝑧𝑖 cos(𝜔0𝑡).  Taking the real and imaginary parts to get the actual equations of 
motion in real space gives 𝑚(𝑡) = 𝐴 cos(Ω𝑧𝑡) cos(𝜔0𝑡) and 𝑚(𝑡) = −𝐴 sin(Ω𝑧𝑡) cos(𝜔0𝑡).  
The pendulum swings back and forth on a short time scale, described by the factor of 
cos(𝜔0𝑡).  On longer time scales, the plane of oscillation rotates, as described by the factors 
of  cos(Ω𝑧𝑡) and − sin(Ω𝑧𝑡), with 𝜔0 ≫ Ω𝑧.  This slow rotation of the plane of oscillation 
occurs at a frequency that depends on your (co-)latitude on the Earth Ω𝑧 ≡ Ωcos𝜃, where the 
rotation frequency of the Earth is Ω = 7 × 10−5 Rads/s. 

http://www.physics.umd.edu/courses/Phys410/Anlage_Fall14/Foucault%20Pendulum.pdf
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Lagrangian mechanics is a different way of looking at things.  We imagine that the 
starting and ending conditions of the particle or system are perfectly specified.  We consider 
every possible evolution of the system that starts at the initial location at the initial time and 
ends up at the final location at the final time.  We define a “physics-based” cost function that 
can be evaluated for every possible evolution of the particle.  We then identify the trajectory 
(or time evolution of the system) that minimizes this cost function, and that is the evolution 
that nature chooses.  Later we will present Hamilton’s principle which states that the cost 
function is the difference between the time-averaged kinetic energy and time-averaged 
potential energy.  Finding the minimum of this cost function is a problem in the calculus of 
variations. 

The calculus of variations is used to find extremum values of integral functionals (a 
function of a function).  An example is a calculation of the shortest distance between two 
points in a plane.  One can write the distance in terms of an integral over the path from the 
designated starting point (𝑚1,𝑚1) to the designated end point (𝑚2,𝑚2) as 𝐿 = ∫ 𝑑𝑑2

1 =

∫ �𝑑𝑚2 + 𝑑𝑚22
1 .  If we (arbitrarily) treat the 𝑚 coordinate as the independent variable we can 

write the integral as 𝐿 = ∫ �1 + (𝑚′)2 𝑑𝑚𝑥2
𝑥1

, where we have written (𝑑𝑚/𝑑𝑚)2 as (𝑚′)2.  Our 

objective is to find the path 𝑚(𝑚) that minimizes this integral.  This is a problem in the 
calculus of variations. 

A second example is Fermat’s principle.  This is the problem of how light rays propagate 
from point 1 to point 2 through a variable dielectric medium characterized by an index of 
refraction that varies with position in a plane as 𝑛(𝑚,𝑚).  The light moves with variable speed 
𝑏 = 𝑐/𝑛(𝑚,𝑚).  Fermat’s principle says that light will take the path that minimizes the time 
to travel between the two points: 𝑡𝑖𝑚𝑒(1 → 2) = 1

𝑐 ∫ 𝑛(𝑚, 𝑚)�1 + (𝑚′)2 𝑑𝑚𝑥2
𝑥1

.  Again we 

need to find the path 𝑚(𝑚) that minimizes this integral.  This is another problem in the 
calculus of variations. 

The Euler-Lagrange equation is derived by assuming that there is an infinite family of 
“wrong” trajectories between points 1 and 2 parameterized by the arbitrary error function 
𝜂(𝑚) and the constant 𝛼 as 𝑌(𝑚) = 𝑚(𝑚) + 𝛼𝜂(𝑚), where 𝑚(𝑚) is the “true” trajectory that we 
wish to find.  The objective is to minimize (or more generally, to make stationary) the 
integral 𝑆 = ∫ 𝑓[𝑚(𝑚),𝑚′(𝑚),𝑚] 𝑑𝑚𝑥2

𝑥1
, and this will be accomplished by taking 𝑑𝑆/𝑑𝛼 and 

setting it equal to zero.  The result, after integrating by parts, is that the following expression 
must be satisfied for all points 𝑚1 ≤ 𝑚 ≤ 𝑚2:  𝜕𝜕

𝜕𝑦
− 𝑑

𝑑𝑥
𝜕𝜕
𝜕𝑦′

= 0, called the Euler-Lagrange 

equation. 

 

 


